高活性咪唑固化剂
本文介绍咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑等高活性咪唑固化剂,高活性咪唑固化剂在中温下短时间即可使环氧树脂固化,因此其与环氧树脂组成的单组分体系贮存期较短。
必须对高活性咪唑固化剂进行化学改性,在其分子中引入较大的取代基形成具有空间位阻的咪唑类衍生物,或与过渡金属Cu、Ni、Co、Zn等的无机盐反应生成相应的咪唑盐络合物,才能成为在室温下具有一定贮存期的潜伏性固化剂。
对高活性咪唑固化剂进行化学改性的方法很多,从反应机理上来看,主要有两种:一种是利用咪唑环上1位仲胺基氮原子上的活泼氢对其进行改性,这类改性剂有异氰酸酯、氰酸酯、内酯等,改性后所得的咪唑类衍生物具有较长的贮存期和良好的机械性能。
另一种方法是利用咪唑环上3位N原子的碱性对其改性,使它与具有空轨道的化合物复合,这类物质包括有机酸、金属无机盐类、酸酐、TCNQ、硼酸等。
其中金属无机盐类一般是含具有空轨道的过渡金属离子,如Cu2+、Ni2+、Zn2+、Cd2+、Co2+等,它们与咪唑形成配位络合物,具有很好的贮存性,而在150~170℃迅速固化,但无机盐类、有机酸及其盐类等的引入,将会破坏原咪唑固化产物的耐水解性和耐湿热性。
国内对咪唑类潜伏性固化剂的研究较少,国外市场则相对较多。将各种咪唑与甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、六次甲基二异氰酸酯(HDI)反应制成封闭产物,减弱了咪唑环上胺基的活性,有较长使用期,当温度上升到100℃以上,封闭作用解除,咪唑恢复活性,环氧树脂固化。
咪唑是分子结构中含有两个间位氮原子的五元芳杂环化合物,咪唑环中的1-位氮原子的未共用电子对参与环状共轭,氮原子的电子密度降低,使这个氮原子上的氢易以氢离子形式离去。具有酸性,也具有碱性,可与强碱形成盐。
外观:白色粉末
铁(PPM)≤5
羟基含量%≥99
钠(PPM)≤10
羟值,mgKOH.g-1728~782
钾(PPM)≤100
熔点°C≥108°C
磷(PPM)≤10
色度(PT-CO)≤150#
硅(PPM)≤1
水份%≤0.3
硫酸根离子(PPM)≤10
灰分%≤0.03
醛%≤0.03
酸值mgKOH/g374.3-378.2
丙酮-三乙胺溶解试验:澄澈透明
2,2-二羟甲基丁酸(扩链剂亲水剂dmba)用途:dmba是带有两个活性的羟甲基团的新戊基羧酸,因此可以被用作合成水性高分子体系,可广泛用于水溶性聚氨酯、聚酯、环氧树脂等方面。dmba在不同溶剂中具有比dmpa更好的溶解性能,因此可以使工作效率得到很大的改善。
dmba被视为水性聚氨酯用新一代绿色环保型扩链剂和内乳化剂,生产水性聚氨酯胶黏剂,无需使用有机溶剂,有机残留物为零。不存在使用dmpa熔点高、溶解慢、反应时间长、能耗高、产品性能差、需要加入有机溶剂、溶剂残留量大等问题。还可用于水性环氧树脂、聚酯等胶黏剂的制造。目前水性聚氨酯、水性树脂、水性胶粘剂、水性涂料等水性产品多用途改性助剂(亲水扩链剂),作为单体,改性过程中,二羟甲基丁酸(dmba)无需添加任何有机溶剂(以水代替),生产工艺更加简单,性能稳定,.其中二羟甲基丙酸(dmpa)以优越的性价比使得其在水性领域应用较为普遍!
用途:
1.水性聚氨酯/聚酯体系涂料、胶粘剂、皮革涂饰的生产中。
2.涂料助剂,用于水溶性聚氨酯、环氧树脂、胶粘剂等。
3.dmba是带有两个活性的羟甲基团的新戊基羧基,因此可以被用作合成水性高分子体系,可广泛用于水溶性聚氨酸、聚酯、环氧树脂等方面。dmba在不同溶剂中具有比dmpa更好的溶解性,因此可以使工作效率得到很大的改善。
dmba和dmpa相比,dmba存在如下明显优点:
(1). dmba在有机溶剂中有更好的溶解性,下表为dmba与dmpa在不同温度下,在不同溶剂中的溶解度数据;(单位g/100g溶剂)
由于dmba具有优良的溶解性和低熔点,因而它在合成水性聚氨酯乳液过程不需要溶剂或少加溶剂。
(2).高反应率,反应速度快,反应温度低。合成聚氨酯预聚体反应时间短,一般只要50-60分钟,而dmpa则要150-180分钟。这是因为dmba结构中比dmpa多了一个亚甲基,使羧基与亚甲基的距离加大,羧基与异氰酸酯的空间位阻减少,从而使反应速率增大。
(3).用于水性聚氨酯乳液其粒径更细且分布窄,胶膜性能优异,光泽度高。
自然界只存在咪唑衍生物,而无游离的咪唑。从苯中析出者为单斜晶系棱柱状无色结晶。有氨气味。相对分子质量68.08。相对密度1.0303(101/4℃)。熔点89~91℃,沸点257℃、165℃~168℃(2.67×103Pa)、138.2℃(1.60×103Pa)。闪点145℃。折射率1.4801(101℃)。粘度2.696mPa·s(100℃)。微溶于苯、石油醚,溶于乙醚、丙酮、氯仿、吡啶,易溶于水(常温70)、乙醇。
显弱碱性。因为1位的—NH—键和3位上的—N=键之间形成氢键,所以沸点较高,当1位氢被取代后,则不能形成氢键,沸点下降。对热稳定,在250℃以下几乎不分解(分解温度590℃)。
对还原剂和氧化剂也很稳定,但可以和无机酸形成稳定的盐。具有芳香族的某些性质,可以在催化剂作用下卤化、硝化、磺化及羟甲基化。并可以和重氮盐在2位偶合。此外,由于=NH基(1位)连接两个双键,又有些“酸性”,可以被金属取代而生成盐。3位氮原对金属离子有配位作用,可形成螯合物。
虽然很难被还原,但可以和质子加合生成阳离子型且有共振的结构,而形成稳定的形态。咪唑环的互变异构体之间极易变化,所以4位和5位的异构体不易区别。
咪唑比其他1,3-二唑更容易发生亲电芳香取代反应,并且反应主要在C-4和C-5上进行。这是因为亲电试剂进攻C-2时,有特别不稳定的极限式,生成的中间体将正电荷分布在氮原子上。例如,咪唑与发烟硝酸/浓硫酸作用,可以很快生成产率很高的4(5)-硝基咪唑;而4,5-二甲基咪唑在剧烈条件下硝化,仍然不能发生反应。
咪唑N-3上的电子云密度较大,所以烷基化反应一般都先在这个氮原子上发生。一烷基化的产物通过互变异构,又可以产生一个类似于吡啶中的氮原子,因此可以进一步反应,生成二烷基化的产物咪唑鎓盐。
文章版权:张家港雅瑞化工有限公司
http://www.zjgyrchemical.com
