膨胀型绿色阻燃剂
膨胀型绿色阻燃剂主要由三部分组成:炭化剂(炭源)、炭化催化剂(酸源)、膨胀剂(气源)。膨胀型绿色阻燃剂中炭化剂为膨胀多孔炭层的炭源,一般是含碳丰富的多官能团(如—OH)物质,季戊四醇(PER)及其二缩醇、三缩醇是常用的炭化剂。
炭化催化剂一般是可在加热条件下释放无机酸的化合物。无机酸要求沸点高,而氧化性不太强。聚磷酸铵(APP)为常用的炭化催化剂。膨胀剂为受热放出惰性气体的化合物,一般是铵类和酰胺类物质,如尿素、密胺、双氰胺及其衍生物。各组分的选择准则如下:
1) 酸源:为了具有实用性,酸源必须能够使含碳多元醇脱水。在火灾发生前,我们不希望脱水反应发生,所以常用的酸源都是盐或酯。酸源释放酸必须在较低的温度进行,尤其应低于多元醇的分解温度。如果有机部分有助于成炭,使用有机磷化物效果更好。
2) 炭源:炭源的有效性与碳含量及活性羟基的数量有关。炭源应在其本身或基体分解前的较低温度下与催化剂反应。
3) 气源:发泡剂必须在适当的温度分解,并释放出大量气体。发泡应在熔化后、固化前发生。适当的温度与体系有关。对于特定的膨胀阻燃聚合物体系,有时并不需要3个组分同时存在,有时聚合物本身可以充当其中的某一元素。使用以上准则可预测大多数体系的有效性。
膨胀型绿色阻燃剂受热时,炭化剂在炭化催化剂作用下脱水成炭,碳化物在膨胀剂分解的气体作用下形成蓬松有孔封闭结构的炭层。一旦形成,其本身不燃,且可削弱聚合物与热源间的热传导,并阻止气体扩散。一旦燃烧得不到足够的燃料和氧气,燃烧
的聚合物便会自熄。此炭层经历以下几步形成。
(1)在较低温度下由酸源放出能酯化多元醇和可作为脱水剂的无机酸。
(2)在稍高于释放酸的温度下,发生酯化反应,而体系中的胺则可作为酯化的催化剂。
阻燃剂TCP 磷酸三甲苯酯 产品工艺
(一)固载杂多酸盐催化合成法
(1)固载杂多酸盐催化剂的制备取一定量的TiCl4,加入12%氨水调至pH值为7-8,沉淀,经抽滤和洗涤至用0.1mol/LAgNO3检查Cl离子为止,烘干.将上述原料与一定量的经过预热处理的H4S iW12O40·ηH2O反应1.5h,整个过程溶液保持近沸状态,缓慢蒸除水分,烘干,得到组成为TiSiW12O40/Tio2的催化剂
(2)合成在反应器中加入定量混合甲酚,制备好的TiSiW12O40/Tio2催化剂(原料总量的1.0%),搅拌,加热至60℃开始滴加三氯氧磷,约1h内加完.升温至100℃继续反应,控制湿度在100-120℃待基本无HCI放出,反应约8h.过滤出催化剂,然后减压蒸馏去前馏分得产品,产率约85.5%.
(二)三氯化磷间接法(冷法)混合甲酚和三氯化磷在15-20℃下反应,生成亚磷酸三甲苯酯,然后在60-70℃通入氯气,生成二氯代亚磷酸三甲苯酯,再于50℃下进行水解,而生成磷酸三甲苯酯.最后经水洗、中和、蒸发脱水和减压蒸馏,截取340-360℃kPa)馏分作为成品.
精制方法:异构体分离困难,一般仅用减压蒸馏除去异构体以外的杂质.
阻燃剂TCP 磷酸三甲苯酯的用途:
1.本品为阻燃性增塑剂。与许多纤维素树脂、乙烯基树脂、聚苯乙烯、合成橡胶相容,尤其与聚氯乙烯相容性极好,且可作为相容性差的助剂媒介,改善与树脂的相容性。本品有很好的相容性、阻燃性、防霉性、耐磨性、耐污染性、耐候性、耐辐射性和电气性能。本品用于油漆,可增加漆膜的柔韧性。本品还用于合成橡胶及黏胶纤维作为增塑剂。
2.用作难燃性增塑剂,用于聚氯乙烯制品如电缆料、人造革、运输带、薄板、地板料等。还用于氯丁橡胶和粘胶纤维。此外,磷酸三甲苯酯还用作防水剂、润滑剂和硝酸纤维素的耐燃性溶剂。
3.用作塑料增塑剂、喷漆增塑剂。
(3)体系在酯化前或酯化过程中熔化。
(4)反应产生的水蒸汽和由气源产生的不燃性气体使熔融体系膨胀发泡。
(5)反应接近完成时,体系胶化和固化,最后形成多孔泡沫炭层。在上面论述的基础上,看上去似乎任何含有这几种官能团的化合物都能发泡,只是发泡的程度不同,其实这是错误的。为了发泡,各步反应必须几乎同时发生,但又必须按严格的顺序进行。膨胀型绿色阻燃剂也可能具有气相阻燃作用,因为磷-氮-碳体系遇热可能产生NO及NH3,而它们也能使自由基结合而导致燃烧链反应终止。
膨胀阻燃剂的效果取决于成炭反应、膨胀反应及炭层结构。
膨胀型绿色阻燃剂的成炭作用主要是由于酸源APP受热分解生成具有强脱水性的磷酸和焦磷酸,它们与成炭剂中的羟基或氨基发生脱水或脱胺反应而生成磷酸酯。生成的酯受热分解而生成不饱和烯烃,接着不饱和烯烃发生多分子环化聚合反应而生成稳定的聚芳香结构的炭层,而非芳香结构中的烷基支链则断裂为小分子而燃烧。
常见的APP和PER体系的成炭反应过程分几步进行。首先,210℃时APP长链断裂而生成磷酸酯键。失水及氨后,可以生成环状磷酸酯。若继续升高温度,通过炭化反应,磷酸酯键几乎完全断裂,生成不饱和富炭结构,反应中可能有Diels-Aider反应,使得环烯烃、芳烃及稠烃结构进入焦炭结构。
膨胀是由于裂解产生的气体迁移所致。迁移的速率与燃烧区熔融物的粘度和放出气体的数量有关,聚合物粘度可以通过控制交联度从而影响炭结构来调节。膨胀炭层的封闭小室的形状将取决于成炭时放出气体数量以及成炭物的粘度。膨胀剂必须满足气体释放过程与炭化过程相匹配。发泡源的分解温度过低,气体在成炭前已溢出,起不到发泡作用;发泡的分解温度过高,气体可能将炭层顶起或吹跑。尿素不能和APP-PER体系很好匹配。
文章版权:张家港雅瑞化工有限公司
http://www.zjgyrchemical.com
